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Introduction

It is known that fatty deposits around the epicardium pose a risk 
for the development and progression of atrial fibrillation (AF), 
but less is known about why or how [1,2]. While visceral adipose 
tissue has long been associated with cardiovascular disorders, the 
specific role of epicardial adipose tissue (EAT) and other forms 
of adipose tissue around the heart is less well studied [3]. Animal 
models studying EAT have limited applicability since the amount 
and function of EAT varies widely among species, such that 
rodents have very little EAT and humans have a great deal [4]. 
The underlying mechanisms by which AF arises and progresses 
are not fully elucidated but there are clear connections between 
AF and EAT. The aim of this study was to explore recent findings 
in the literature relating on this topic of much current interest.

AF involves disorganized ectopic electrical activity originating 
in the atria and conducted by an atrial substrate, which may 
arise due to localized tissue damage [5]. Prolonged arrhythmic 
activity may cause atrial remodeling that can then support 
further fibrillation, leading to the old clinical adage describing 
this vicious cycle, “AF begets AF” [6]. Although AF is sometimes 

described as a progression or spectrum, not all patients pass 
through these phases in order or even experience all of them. 
Paroxysmal AF may self-terminate while persistent AF is more 
long-lasting and may require medical intervention in the form of 
electrical or pharmacological treatment to convert back to sinus 
rhythm. Some AF is medically refractory and may be described 
as permanent or chronic. AF may exist in the setting of valvular 
disease or apart from it. Furthermore, AF may arise spontaneously 
after cardiac or other surgeries [7]. Risk factors for progression of 
AF have been well described in the literature: older age, heart 
failure, hypertension, chronic kidney or pulmonary diseases, type 
2 diabetes mellitus (T2DM), a history of stroke, and an oversized 
left atrium [8]. Therapeutic interventions have been primarily 
based on strategies of rate versus rhythm control [8]. AF may 
cause symptoms, even debilitating ones, but many patients with 
AF remain asymptomatic [9].

A particular risk with AF is that a thrombus can form, typically 
in the left atrial appendage, giving rise to stroke via peripheral 
embolization [10]. In fact, AF is a source of considerable morbidity 
and mortality by increasing a patient’s risk of stroke by five-fold 
[11].
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Methods

This narrative review is based on a search of the peer-reviewed 
literature. The authors searched “epicardial adipose tissue and 
atrial fibrillation” with no delimiters in PubMed and found 300 
articles. We excluded articles not in English, not relevant to EAT 
or AF, as well as posters, abstracts, correspondence, patents, or 
other non-peer-reviewed materials. We included articles that dealt 
with the dual topics of EAT and AF. We searched Google Scholar 
as well, where there was considerable overlap with our PubMed 
results. While we imposed no temporal delimiters on our search, 
it was observed that most materials were written on or after 2017.

The authors also searched “left atrial appendage epicardial 
adipose tissue” and retrieved 21 results, of which two were clinical 
studies. For Table 2, a literature search was conducted seeking 
clinical trials, randomized clinical trials, or meta-analyses using 
the keywords “atrial fibrillation and epicardial adipose tissue.” 
This duplicated some results from the above search but it provided 
us with 15 specific trial results, of which 10 were used in the table. 
The three excluded studies were not relevant to our topic. The 

bibliographies of key articles were also searched as was general 
background information and statistics on AF. 

Results

Adipose tissue depots in and around various areas of the heart 
have been described in the literature (see Table 1). Epicardial 
adipose tissue (EAT) is increasingly being recognized by its 
topography as unique and distinct from other fatty tissue in the 
body. By virtue of its location, it provides a degree of cushion for 
the heart muscle and this fatty layer may protect the coronary 
vessels from torsion during the heart’s depolarization and 
repolarizations [3]. The chemical composition of EAT and its 
lipogenicity may provide energy to the heart and offer protection 
against potentially lipotoxic exposure to free fatty acids [4]. EAT 
is involved in thermogenesis and confers cryoprotection to the 
heart [4]. The immunological and other cells produced by EAT 
include pro-inflammatory mediators, pro-fibrotic mediators, and 
other neurotransmitters, some of which may play important roles 
in arrhythmogenesis [4].

Table 1: Types of cardiac adipose tissue [4,12]. Note that some of these terms are becoming more historical than contemporary, for 
example, “paracardial adipose tissue.”

Name Description

Epicardial adipose tissue (EAT) Derived from mesenchymal epicardial cells, it is located between the visceral 
layer of the pericardium (within the pericardial sac) and the myocardium with 
no intervening fibrous or other layer. It accounts for about 20% of heart 
weight.

Intramyocardial adipose tissue Adipocytes residing in the myocardium

Intrathoracic adipose tissue Visceral adipose tissue of the chest, including pericardial and epicardial adipose 
tissue plus other fatty deposits inside the chest but excluding subcutaneous fat

Paracardial adipose tissue Located on the exterior of the fibrous portion of the pericardium, but the term 
is falling into disuse because of lack of clarity

Pericardial adipose tissue Epicardial plus paracardial adipose tissue, that is the fatty tissue of the thorax 
that surrounds the heart and pericardial sac

Perivascular adipose tissue Adipose tissue located outside of the blood vessels and present to some extent 
around all arteries except the cerebral artery and microcirculatory vessels

EAT is located between the visceral layer of the serous pericardium 
and the surface of the heart, putting it in direct contact with 
the myocardium. It possesses properties distinct from those of 
pericardial adipose tissue, which is found inside the visceral and 
parietal layers of the serious pericardium, in other words, not 
in direct contact with the myocardium [13]. While the volume 
of EAT is relatively small in certain animals, such as mice, in 

healthy humans, EAT can cover 56% to 100% of the cardiac 
circumference and comprise up to 20% of the weight of the 
heart [14]. Women have significantly lower volumes of total EAT 
compared to men (p<0.001), but the ratio of peri-atrial adipose 
tissue to EAT was significantly higher in women (p=0.009) than 
men [15]. See Figure 1.
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Figure 1: Epicardial adipose tissue is located within the pericardial sac and adjacent to the myocardium. Original art by Todd Cooper of The Coyote Studios.

While EAT infiltration into the myocardium is relatively prevalent, 
even in healthy individuals, [16] EAT infiltration of the left atrial 
appendage has been positively correlated with myocardial fibrosis 
severity [16]. The location of EAT with respect to the left atrium 
can indicate the existence and severity of a so-called low-voltage 
zone, defined an area during sinus rhythm with ≤0.5 millivolt on 
a bipolar electrogram [17] The volume of EAT may also predictive, 
because it is larger in those with paroxysmal AF than in those with 
normal sinus rhythm, making it a potential marker for early-onset 
arrhythmia [18].

EAT derives from the mesenchymal transformation of epicardial 
cells, which become vascularized by branches extended from 
the coronary arteries [14]. EAT is thought to act as a localized 
modulator of cardiovascular disease by secreting various 
factors in paracrine fashion that affect cardiomyocytes and the 
vasculature [12]. All adipose tissue is biologically active, and EAT 
is known to be involved in lipid and energy homeostasis [1]. 
Its ability to metabolize and secrete free fatty acids may explain 
its cardioprotective properties. Adipose tissue also produces 
bioactive molecules, including pro-inflammatory mediators 
and adipocytokines. EAT from patients with ischemic forms of 
heart disease tends to be higher in pro-inflammatory cytokines, 
including tumor necrosis factor-alpha (TNF-α), which in theory 
might promote insulin resistance [1]. In contrast to subcutaneous 
adipose tissue, EAT expresses more of the uncoupling protein-1 
(UCP-1), located in the mitochondrial inner membrane [1]. 
UCP-1 has been described as the phenotypic signature of brown 
“healthy” adipose tissue, which serves to generate heat [1]. It has 
been speculated that EAT may be thermally protective of the 
myocardium since UCP-1 is a specific biomarker for nonshivering 

thermogenesis in brown adipocytes [19]. From fatty tissue samples 
taken from 50 patients undergoing open-heart surgery (44 
coronary artery bypass grafts, 6 heart valve replacements), UCP-1 
expression was five times greater in epicardial than substernal fat; 
UCP-1 expression was minimal in subcutaneous fat deposits [19]. 
The UCP-1 expression in EAT increases with body mass index, 
decreases with age, has no relationship to epicardial fat volume 
or waist circumference, and is similar in men and women and in 
patients on or not on statin therapy [19]. This suggests that EAT 
functions more like brown fat as a defender of myocardial tissue 
and coronary vessels, with this benefit lessening with advancing 
age [19,20].

Pericardial fat tends to be described as brown or beige with 
health, whitening with age and/or disease. Brown and beige fat 
use glucose and lipids to produce heat and offer cardioprotective 
benefits [12]. Brown fat transitions to less-healthy white fat in 
obesity, and this brown-to-white transition appears to influence 
the development of cardiovascular disease [12]. This pathological 
change in the adipose tissue may contribute directly to metabolic 
disorders and atherosclerosis. Unlike brown fat, white adipose 
tissue lacks UCP-1 [12]. The potential for “browning” white 
adipose tissue around the heart is currently a field of investigation 
[12].

Infants have a higher proportion of brown fat which decreases as 
they mature [21]. Over time, brown fat transitions to white fat in 
a gradual process. Recently, some fat has been described as beige 
or brown-in-white (“brite”), characterized by white adipocytes 
that express brown genes, including thermogenetic properties 
[20,22]. Beige or brite fat may change to white fat with removal of 
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a thermal challenge or other factors [23]. Because EAT expresses 
UCP-1, it is typically considered a beige or brite fat, [23] but with 
obesity, EAT may transition to a white fat and no longer express 
UCP-1 [12]. Conversely, white fat may also revert back to beige or 
brown fat. The so-called “rebrowning effect” can occur with EAT 
when genes associated with brown adipocytes are upregulated 
accompanied by decreased inflammation [24].

Brown fat tends to have more gap junctions compared to white 
fat, [25] but it remains unknown whether adipocytes can forge 
functional gap junctions with nearby fibroblasts or myocytes. 
If such coupling of dissimilar cells is possible, it suggests that 
the electrophysiologic properties of myocytes may be subject 
to modulation [16]. Should such heterocellular gap junctions 
form, they might contribute to heterogeneous electrophysiologic 
function in atrial tissue, posing a potential risk for AF [16]. This 
finding would make the ratio of relative volumes of adipocytes 
to myocytes important, because a large number of adipocytes 
coupled to a myocyte could impede myocyte depolarization and 
increase the threshold of the action potential [16]. Adipocytes 
are much larger in volume than myocytes and both are larger 
than fibroblasts so a high volume of adipocytes is possible. The 
presence of fat within an adipocyte may further impede electrical 
conduction speed [16].

Adipokines are a type of signaling molecule produced by adipose 
tissue whose role is to modulate the physiology of myocytes and 
fibroblasts. In a healthy heart, adipokines serve to protect the 
heart from inflammation and fibrosis [16]. However, adipokines 
can abruptly reverse roles when reactive oxygen species (ROS) 
is produced, taking on a pro-inflammatory and profibrotic 
role which can damage epicardial and myocardial tissue [16]. 
Furthermore, EAT has the ability to alter electrophysiologic 
properties of myocytes [16] and the interplay between myocytes 
and nonmyocytes in this connection may play a crucial role in 
AF. The adipokines in EAT appear to modulate leukocytes and 
fibroblasts in the fatty tissue and leukocytes, fibroblasts, and 
myocytes in the myocardium. Among these many adipokines are 
omentin, apelin, adiponectin, resistin, adipose fatty-acid-binding 
protein, vistafin, leptin, and others [16]. The neural network 
within EAT releases other neurotransmitters, such as acetylcholine 
and vasoactive intestinal protein [26]. A proposed theory 
investigated in an animal model is that the neurotransmitters in 
EAT regulate the excitability of the myocytes, which could trigger 
AF [27]. Cholinergic nerves of the EAT have been implicated 
in postoperative AF [28]. This was shown when an injection of 
botulinum toxin into EAT in cardiac surgery patients blocked 
acetylcholine release from the parasympathetic nervous system 
and reduced the incidence of postoperative AF in the first 30 days 
after surgery [29]. This injection conferred protection against AF 
for a year after surgery and may be due to modification of the 
EAT secretome.

Epicardial Myocytes

In the healthy heart, the myocardial tissue preserves a highly 
organized sequence of action potentials across the tissue to 
promote coherent cardiac depolarizations [13]. Healthy myocytes 
safeguard this property, but may be disrupted by inflammatory 
processes, coronary artery disease, ischemia, and other conditions 
[13]. Myocytes function in an extracellular matrix like a scaffold; 
this matrix is maintained by fibroblasts, which can adapt the 
scaffold as needed [30]. Myocytes and fibroblasts communicate 
with each other and it appears that they can also influence the 
electrophysiologic properties of the heart muscle [31]. Myocytes 
are disproportionately distributed in the heart. The human 
heart has far more fibroblasts than myocytes, but the myocytes 
are considerably larger and thus compose a greater volume. This 
volume difference is much more marked in the ventricles than 
the atria [13,16].

Large Extracellular Vesicles

Naturally released by diverse types of cells including the EAT, 
extracellular vesicles (EV) lack a nucleus and therefore cannot 
replicate. In the past, these particles have been described under a 
variety of different names that have fallen into disuse: exosomes, 
ectosomes, and microparticles [32]. The main function of EVs is 
to facilitate cell-to-cell communication pathways [33]. They have 
been implicated in the development and prolongation of AF and 
may be considered as potential biomarkers [34-36].

In a study of cultured EAT specimens taken from 62 patients 
(32 of whom had AF) during cardiac procedures, inflammation, 
fibrosis, and apoptosis were observed in all of the EAT cultures 
[37]. However, AF patients exhibited both a greater number of 
EVs and these EVs possessed larger amounts of pro-inflammatory 
cytokines and pro-fibrotic microRNA than those from patients 
without AF. Furthermore, the cultures from AF patients 
promoted a sustained form of re-entry in cardiomyocytes derived 
from pluripotent stem cells [37].

It was speculated that large EVs may possess a pro-coagulant 
function that would limit or suppress stroke [10]. In a study of 836 
AF patients (280 had a history of stroke) from the ARISTOTLE 
trial, EVs were measured using flow cytometry and compared to 
a cohort of unselected individuals aged 70 years (n=1,007).38 
EVs were taken from platelets, leukocytes, erythrocytes, and 
inflammatory endothelial cells. Patients with AF had significantly 
higher levels of EVs compared to the control group, but none 
of the EVs measured at baseline could be associated with a later 
stroke in AF patients. For that reason, the study concluded that 
EVs probably were not mediators of stroke in AF patients [38]. 
However, the problem may be more complex than it initially 
appears. In a study of 58 patients, of whom 49% had permanent 
AF, 34% non-permanent AF, and 17% no history of AF, blood was 
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sampled from three specific cardiac locations: in the right atrium, 
in the left atrium, and in the left atrial appendage [10]. Using 
flow cytometry, it was found that large EVs were significantly 
more common in the left atrial appendage (LAA) of permanent 
AF patients compared to those with non-permanent AF. Platelet-
derived large EVs were also significantly more numerous in 
the LAA of patients with any type of AF. Thus, platelet-derived 
large EVs were more plentiful in the LAA of permanent AF 
patients, suggesting that these large EVs might be involved in 
thrombus formation within the LAA [10]. The anatomical and 
electrophysiologic properties of the LAA are associated with its 
capacity to form thrombi; in fact, 90% of thrombus formation in 
nonvalvular AF patients occurs in the LAA [39]. Even in patients 
with valvular AF, 57% of thrombus formation occurs in the LAA 
[40].

Since EVs facilitate intercellular communications associated with 
a variety of physiologic processes and are known to have pro-
coagulation effects in the heart, their potential role in stroke is of 
great interest [41]. In a study of 25 patients, blood taken during 
open-heart surgery found that patients with a history of AF had 
higher EV levels than those without AF, [42] and a study by Zietzer 

A, et al. (2022) found that the type of AF, defined as permanent 
versus not-permanent, influences the distribution of EV sub-types 
in the LAA [10].

The Left Atrial Appendage

Due to its mechanical, anatomic, and electrophysiologic 
properties, the LAA is considered to the point of origin of most 
thrombi [39]. LAA morphology is highly variable among patients 
(see Figure 2) and AF can result in LAA remodeling, as was shown 
in a controlled retrospective study of 225 patients, of whom 
76 had persistent and 70 had paroxysmal AF. Using medical 
records of echocardiograms and computed tomography, LAA 
morphology was classified as “chicken wing” or “non-chicken-
wing” [43]. Persistent AF patients were more likely to have “non-
chicken-wing” LAA morphology [43]. However, in a study of 84 
patients who underwent radiofrequency ablation for AF, those 
with “chicken-wing” LAA morphology had a significantly higher 
incidence of AF recurrence (68.2%, p<0.01) [44]. In general, it 
appears that “chicken wing morphology” of the LAA conferred 
a degree of relative protection against thrombus formation [45].

Pro-inflammatory and profibrotic cytokines and adipokines in 
EAT may be located adjacent to the pulmonary veins and close 
to the LAA. In a study of 61 consecutive mitral valve surgery 
patients, of whom 15 had AF, the AF group had significantly 
higher rates of tyrosine hydroxylase and choline acetyltransferase 
in the LAA, in the EAT, and in the pulmonary vein muscle sleeve 
myocardium. These pro-inflammatory and profibrotic mediators 
may be associated with LAA remodeling and arrhythmogenesis 
[46]. The relationship between the LAA and EAT remains to be 
elucidated. A thickened layer of EAT was associated in one study 
(n=202) with low LAA emptying velocity, which might increase the 
risk of thromboembolism [47]. The morphology of the LAA along 

with its trabeculae likely play a role in promoting or discouraging 
thrombus formation [48]. 

The Association of EAT and AF

Despite evidence that the volume of EAT can be correlated to AF, 
it is not clear if there is a dose-response relationship, that is, if 
larger volumes confer a proportionately higher risk. In a study of 
326 patients in Japan (n=326, of whom 214 had AF) the volume of 
EAT had a strong association to the incidences of both paroxysmal 
and persistent forms of AF, and, in this connection, the volume 
of the left atrium played a role in the incidence of persistent, 
but not paroxysmal, AF [49]. This study excluded patients with 

Figure 2: There is considerable variation in left atrial appendage morphology and patients with persistent AF. The four main shapes are described above. About 12% of 

patients have the chicken wing shape. Original art by Todd Cooper, The Coyote Studios.



21st Century Cardiol-3-130 | Page 6 of 14Volume 3, Issue 1Pergolizzi Jr, et al.,

Citation: The Role of Epicardial Adipose Tissue in Atrial Fibrillation: A Narrative Review, 21st Century Cardiol, Volume 3 (1): 130

coronary artery disease, so these results may not be generalizable 
to a real-world clinical population. In that study, the cut-off value 
for the volume of EAT was 64 mL/m2 for persistent AF but 55 
mL/m2 for paroxysmal AF [49]. These cut-off values could be used 
independently from other AF risk factors to predict the risk of 
persistent or paroxysmal AF [49].

The volume of EAT on the left atrium appears to be a risk marker 
for AF recurrence following catheter ablation [50]. In patients 
undergoing pulmonary vein isolation procedures, a higher 
EAT volume on the left atrium was associated with conduction 
disorders [51]. In a study of 105 paroxysmal AF patients who 
underwent electro-anatomical mapping, P-wave duration was 
longer and left-atrial conduction velocity slower in patients with 

greater EAT volume (p<0.001, both). In fact, p-wave duration 
and conduction velocity could be correlated with left atrial EAT 
(β=0.367, p<0.001 and β=-0.566, p<0.001, respectively) [51]. 

The role of EAT in postoperative AF remains unclear. In a study of 
83 patients undergoing coronary artery bypass graft surgery and/
or a form of valvular surgery, 43 patients developed postoperative 
AF after the procedure. Using multivariable analysis, it was found 
that the volume of the LA itself, rather than the volume of EAT, 
was an independent predictor of postoperative AF [52]. However, 
the ratio of left-atrial EAT to total EAT could be associated with 
postoperative AF in a study of cardiac surgery patients (n=77) [53]. 
A variety of clinical studies have assessed the relationship between 
EAT volume and AF. See Table 2.

Table 2: Clinical studies, randomized clinical trials, and meta-analyses exploring the relationship of EAT to AF incidence. Studies 
appear in alphabetical order by first author in each category.

Study Endpoint Subjects Key Findings

EAT Volume and AF

Gaeta M (2017) [54]
Meta-analysis

AF 7 studies
The volume of EAT is significantly greater in all AF than non-
AF patients, but persistent AF patients had significantly greater 
volumes of EAT than paroxysmal AF patients

Wong CX (2016) [55]
Meta-analysis

AF
63 observational 
studies (n=352,275)

The association between EAT and AF was greater than the 
association of abdominal or overall adiposity with AF

Zhu W (2016) [56]
Meta-analysis

AF
10 case control 
studies

The volume of EAT in total and around the left atrium was 
significantly associated with AF

EAT and Post-Procedural AF Recurrence

Canpolat U (2016) [57]
RCT

AF
234 AF patients 
undergoing balloon 
cryoablation

Greater EAT thickness was an independent predictor of AF 
recurrence following balloon cryoablation

Chen J (2022) [58]
Meta-analysis

AF

10 studies (n=1,840) 
of AF patients 
undergoing catheter 
ablation

Greater EAT thickness was a strong predictor of AF recurrence 
following catheter ablation and may be useful as a marker prior to 
ablation to determine who will benefit from procedure

Nagashima K (2011) 
[59]
CT

AF
40 AF patients 
undergoing catheter 
ablation

EAT volume is larger in AF than non-AF patients and may be 
useful as a predictor of AF recurrence following AF catheter 
ablation

EAT and Postoperative AF

Pokushalov E (2015) 
[28]
RCT

AF one 
year after 
surgery

60 AF patients 
undergoing CABG

Botulinum toxin injection into EAT during CABG reduced AF 
after surgery and for one year postoperatively with no serious side 
effects

Pokushalov E (2014) 
[60]
RCT

POAF
60 AF patients 
undergoing CABG

Botulinum toxin injection into EAT during CABG reduced 
POAF (7% in botulinum groups versus 30% of controls)

Sha R (2021) [61]
Meta-analysis

POAF 10 studies
Both EAT volume and thickness were greater in patients who 
experienced POAF following cardiac surgery.
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White CM (2007) [62]
RCT
(AFIST-III)

POAF
180 CABG patients, 
of whom 5% had 
history of AF

Maintaining the anterior fat pad did not reduce incidence of 
POAF

AF: atrial fibrillation; CABG: coronary artery bypass graft (procedure); CAD: coronary artery disease; CT: clinical trial; EAT: 
epicardial adipose tissue; POAF: postoperative atrial fibrillation; RCT: randomized controlled trial; T2DM: type 2 diabetes mellitus

Using multi-slice spiral computed tomography (CT) to assess the 
total volume of EAT and the left-atrial EAT, 207 patients (125 
with AF, 82 in sinus rhythm) were evaluated. Among the subjects 
with AF, 80 had paroxysmal and 45 persistent AF [63]. In this 
study from China it was found that EAT, whether in totality or 
specific to the left atrium, had a significantly larger volume in any 
AF group compared to the sinus rhythm patients (p<0.01, all). 

Using logistic regression analysis, it can be shown that the total 
volume of EAT or the volume of EAT in the left atrium were 
independent related factors of AF and according to the Pearson 
correlation analysis, total EAT volume and left-atrial EAT volume 
could be positively correlated to the left atrial diameter (r=0.466 
and r=0.290, respectively, p<0.01 both) [63]. See Table 3.

EAT and Cardiac Electrophysiology

The atrial substrate necessary for AF may be the byproduct of 
cytokine activity in the EAT secretome. Implicated among 
these cytokines is a member of the super-family of transforming 
growth factor β (TGF-β) known as activin A [1]. Activin A has 
known pro-fibrotic effects [64]. In a study of 89 cardiac surgery 
patients, the expression of activin A by the EAT served as an 
independent predictor of those who would develop postoperative 
AF, particularly, but not exclusively, for those with valvular heart 
disease [65]. These same conclusions were reached in a study of 
124 on-pump coronary artery bypass graft patients, where thicker 
EAT predicted elevated risk for postoperative AF [66]. Thus, the 
EAT secretome may promote atrial fibrosis via the expression of 
activin A [67]. 

Matrix metalloproteinases (MMPs) help to modulate cytokines 
throughout the body and may induce cardiac remodeling as 
well as contribute to certain disease processes, such as arthritis 
and cancer. MMPs are involved in regulating basement member 
components, including collagen fibers. It has been shown in a 
murine model that MMP-2 and MMP-7 are upregulated during 
AF and may be associated with the accumulation of interstitial 

fibrosis [68]. MMP-8 is expressed in EAT and has been associated 
with atherosclerotic plaque formation [69].

The pathogenesis of AF involves an inflammatory response, and 
C-reactive protein levels are double in those with AF than those 
without and higher in those with chronic AF versus paroxysmal 
AF [1]. Pro-inflammatory cytokines such as interleukin-6 (IL-
6), IL-8, and TNF-α are produced by EAT and have also been 
associated with AF [1].

The pro-fibrotic activity of EAT can combine with these 
inflammatory responses to create a vulnerable substrate. The 
transition from fatty infiltrates extending into the myocardium 
to fibrofatty infiltrates and a thickening of the surface of the 
adipose layer are associated with fibrosis and have been linked 
to the development of AF [70]. Macrophagy promotes fibrosis 
in adipose tissue because the secretion of TGF-β stimulates 
a differentiation of pre-adipocytes that, in turn, stimulates 
myofibroblast production [71]. In a study of human hearts, more 
fibrotic growth occurred in areas where the myocardium was 
in direct contact with adipose tissue than elsewhere [72]. This 
is particularly true in the case of cardiac trauma, during which 
adipocytes and fibroblasts of the myocardium become activated, 

Table 3: Based on data obtain from Zhu and colleagues, the volume of EAT in total and specific to the left atrium were recorded in 
patients with normal sinus rhythm and AF. All volumes are cubic centimetres. Data are based on 207 patients of whom 72 had normal 
sinus rhythm (first column); 125 had any type of AF (second column). Of this AF population the fourth and fifth columns differentiate 
between paroxysmal and persistent AF [63].

Sinus rhythm

n=82

AF overall

n=125

Paroxysmal AF

n=80

Persistent AF

n=45

All data expressed in mL/m2

Volume of EAT (total) 92.2±32.1 136.0±46.0 134.2±46.3 140.1±52.6

Volume of EAT in the 

left atrium
27.1±7.5 39.2±19.2 35.9±17.0 45.1±21.5
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migrate toward the myocardium, and differentiate into fibroblasts 
or adipocytes [73]. Additionally, fibrofatty infiltrates in EAT are 
associated with a slower conduction time for the action potential 
and conduction heterogeneity across the atrial myocardium [74], 
both of which could contribute to AF or its progression.

The electrophysiologic property of re-entry is the underlying 
mechanism of many tachyarrhythmias, but the role and nature 
of re-entrant circuits in AF remain unclear. Re-entry rotors, 
independent wavelets, and a newer double-layer hypothesis of 
dissociation have been offered to better explain the unique 
mechanisms underlying AF [75-78]. Longitudinal dissociation 
describes the asynchronous propagation of waveforms along the 
longitudinal axis of the atrioventricular conduction pathway, 
permitting various forms of re-entry to arise. Longitudinal 
dissociation in atrial tissue in older individuals suggests a 
progressive, age-related electrical dissociation of the side-by-side 
atrial muscle bundles. A recent qualitative analysis of intra-atrial 
conduction disturbances during AF reported that the primary 
feature of the substrate associated with long-standing AF was 
longitudinal dissociation, presenting as lines of conduction 
block running parallel to the atrial muscles. On the other hand, 
rotors or multiple foci that could explain long-standing AF have 
not yet been discovered [78]. Focal fibrillatory waves sometimes 
associated with AF may actually be waves originating at deeper 
layers of the musculature breaking through the epicardium 
[79]. AF is increasingly being described as a three-dimensional 
condition [80].

The healthy atrial myocardium depolarizes in a unified and 
coherent pattern as the waveform propagates across the tissue; 
however, when this depolarization becomes disorganized or patchy, 
it may allow for microcircuits to form [1]. EAT forms around the 
epicardium but may over time penetrate deeply into the epicardial 
layer and from there into the myocardial tissue itself, promoting 
atrial disorganization and substrate formation [81].

The atrial substrate typically exhibits myofibroblasts along with 
de-differentiated and dystrophic myocytes, but it is not known 
how these cells remodel [82]. Adipose tissue contains stem cells 
in the stroma fraction, and these cells are able to differentiate 
into adipocytes, myofibroblasts, or cardiomyocytes [83]. In other 
words, EAT itself may be the tissue providing the precursor cells 
used in structural atrial remodeling [1]. 

Obesity and AF

The association between obesity and AF was established in the 
Long-Term Effect of Goal-Directed Weight Management in an 
Atrial Fibrillation Cohort: A Long-Term Follow-Up (LEGACY) 
study which evaluated 1,415 consecutive AF patients [84]. The 
majority of patients (58%) had a body mass index ≥ 27 kg/m2 
and were offered an intervention consisting of diet and risk factor 
management. Among those patients who lost 10% or more of 

their body weight, 88% reversed from persistent AF to paroxysmal 
or no AF (p<0.001). Overall, the more weight lost, the greater the 
degree of freedom from AF [84]. This study evaluated total body 
weight, not EAT.

The volume of the EAT depot is considered an index of cardiac 
obesity, [4] and might be a more accurate predictor of AF than 
body mass index [85]. In a study of 3,217 participants from the 
Framingham Heart Study Offspring and Third-Generation 
Cohorts, subjects underwent a multidetector CT procedure to 
measure pericardial, intra-thoracic, and visceral adipose tissue 
volumes and its relationship to AF, adjusting for established AF 
risk factors. Note that pericardial fat included both paracardial 
adipose tissue and EAT. Of the total cohort, 54 had been 
diagnosed with AF. In statistical models, pericardial fat but not 
intra-thoracic or visceral abdominal fat was associated with AF 
[86]. However, a subsequent analysis of 2,135 participants from 
the same trial failed to find significant associations between 
ectopic cardiac adipose tissue deposits and incident AF [87].

Future Directions

The genetic component of EAT in AF is of great interest. CircRNA, 
a type of noncoding RNA, has been detected in EAT and may be 
involved in the pathogenesis of disorders that predispose patients 
to heart failure [88] and AF [89]. By definition, a non-coding 
RNA (ncRNA) does not translate into a protein. These ncRNA 
are “master regulators” that govern the genome at the highest level 
and manage numerous cellular processes. The dysregulation of 
ncRNAs have been associated with such adverse consequences 
as cancer. One type of ncRNA is of particular interest: circular 
RNA (circRNA), which forms a closed continuous loop rather 
than a linear strand. Exosomes bearing circRNA have been 
identified as having been produced by EAT [89]. Analyzing EAT 
from 12 patients (50% had AF), RNA sequencing was able to 
identify 2,159 circRNAs, of which 528 were upregulated while 
579 were downregulated [89]. This number included 10 circRNA 
forms that existed only in the setting of AF, all of which were 
upregulated [89]. These circRNAs modulate microRNA in heart 
disease and the interaction among circRNA, microRNA, and 
messenger RNAS (mRNA) may play a role in AF [90]. Plasma 
circRNA has been studied for its potential role as a biomarker for 
AF prognosis [91].

Another mediator produced by the EAT of growing interest 
to the study of AF is YKL-40, which takes its name from its 
molecular weight and its three terminal amino acids: tyrosine 
(Y), lysine (K), and leucine (L). Expressed by the chitinase-3-like 
protein 1 (CHI3L1) gene, YKL-40 is emerging as an important 
new biomarker for heart disease in general [92]. YKL-40 indicates 
the presence of inflammation, remodeling, and fibrosis and it is 
found at elevated levels in people with AF [92]. YKL-40 is highly 
expressed in the EAT of AF patients, in particular those with 
higher body mass index [92].
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Discussion

Our understanding of the unique characteristics of EAT and its 
associations to both the pathogenesis and progression of AF has 
created promising new areas of research for AF. AF is the most 
common arrhythmia, yet its underlying mechanisms remain to be 
elucidated. AF is complex, as it exists in a multiplicity of forms, 
such as postoperative AF, paroxysmal AF, persistent AF, valvular 
AF, nonvalvular AF, chronic AF, and even intractable forms, 
which may or may not be related to each other. Safe and effective 
AF treatments in the form of ablative procedures, pharmacological 
treatments, electro-cardioversion and other forms of device-based 
therapy, as well as lifestyle modifications, have all been explored, 
but not all patients respond to these therapies and even after 
initial success, AF recurrence is not uncommon. Perhaps the 
best illustration of how challenging AF is to treat is the ongoing 
clinical debate about whether to address rate control or rhythm 
control in AF management. Yet clinicians are undivided in the 
conviction that AF should be treated, if at all possible, as it is 
closely associated with morbidity and mortality.

The differentiation of EAT as distinct among other forms of 
fat in or around the heart represents an important scientific 
milestone. EAT may well provide us with effective biomarkers 
for AF vulnerability, risk, and prognosis. The volume of EAT 
alone may have an important predictive value and could serve 
as a drug target far beyond that of management of AF. A study 
of dapagliflozin demonstrated that the volume of EAT may be 
decreased pharmacologically [93]. A study of 2,482 subjects found 
EAT volume could be correlated to a number of conditions, 
including coronary artery disease, fatty liver disease, cardiac 
abnormalities, metabolic syndrome, and insulin resistance [94]. 
EAT thickness has been associated with the QT interval, with 
thicker layers indicative of more prolonged QT intervals in 
patients with arterial hypertension [95].

This narrative review has several limitations. The subject of 
AF is broad and we do not make rigorous distinctions among 
paroxysmal AF, persistent AF, postoperative AF, and other types of 
the arrhythmia, which may vary in terms of how EAT affects them. 
Much of our understanding of EAT is relatively new and therefore 
subject to change as research progresses. This is an important albeit 
fragmented area for research, few studies have been conducted, 
and conventional animal models are not particularly serviceable 
for research. Nevertheless, EAT and its association with AF opens 
up a promising new area of investigation in our ongoing efforts to 
better understand and manage AF.

Conclusion

While the role of EAT in the pathogenesis of AF remains to 
be elucidated, it is clear that EAT is a special type of cardiac 
fat depot which chemically interacts with the myocytes in ways 
that may encourage development of an atrial substrate and alter 

electrophysiologic properties. While obesity is considered a risk 
factor for AF, it is cardiac obesity and EAT volume in particular 
that may be a more specific predictor and biomarker. Further 
study of EAT and its biochemical interactions with the heart 
muscle are warranted and may help to elucidate the underlying 
mechanisms of AF.
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